Dynamical Systems Tutorial 13: Symmetries and Reversors

July 8, 2019

1 Symmetries

A flow is said to have a symmetry if there is a diffeomorphism, $S: M \rightarrow M$, that conjugates the flow to itself:

$$
\begin{equation*}
\varphi_{t}(S(z))=S\left(\varphi_{t}(z)\right), \quad t \in \mathbb{R} \tag{6.24}
\end{equation*}
$$

Since we assume that S is smooth, we can take the time derivative of this relation to obtain an equivalent requirement on the vector field associated with φ :

$$
\begin{equation*}
f(S(z))=D S(z) f(z) \tag{6.25}
\end{equation*}
$$

1.1 Continuous and discrete symmetries

$$
\dot{r}=r h(r), \dot{\theta}=1(6.20)
$$

Some symmetries, like a rotation symmetry, depend continuously upon a parameter and are thus called continuous symmetries. For example, the system (6.20) is obviously symmetric under the rotation

$$
\begin{equation*}
S_{\psi}(r, \theta)=(r, \theta+\psi) \tag{6.26}
\end{equation*}
$$

for any angle ψ. For this case $D S$ is the identity matrix, so (6.25) becomes $f(r, \theta+\psi)=$ $f(r, \theta)$, which is satisfied for all ψ when f is a function of r only.

The collection of symmetries of a flow forms a group. This follows because the identity map is always a symmetry, and if S_{1} and S_{2} are symmetries of φ, then so is their composition $S_{3}=S_{1} \circ S_{2}$. Similarly, the inverse of a symmetry also satisfies (6.24) and therefore is also a symmetry. For example, the rotation symmetry (6.26) is a representation of the abstract rotation group, $O(2)$.

Discrete symmetries can also occur. For example, the system (6.11) is symmetric under the transformation $S(x, y)=(-x,-y)$, a rotation by π. To see this, note that for this case $D S=-I$, so (6.25) becomes $f(-x,-y)=-f(x, y)$, which is obviously satisfied by (6.11). The symmetry group in this case has two elements, the identity and S, and is called \mathbb{Z}^{2}. Much more about the implications of the existence of a nontrivial symmetry group can be found in (Field and Golubitsky 1995; Golubitsky and Stewart 2002).

$$
\begin{equation*}
\dot{x}=y^{2} x-x^{2} y, \dot{y}=x^{3}+y^{3} \tag{6.11}
\end{equation*}
$$

1.2 Reversors

Another type of symmetry that commonly occurs is a time reversal or reversing symmetry-when the motion backward in time is equivalent to that forward in time. Thus, a system is said to have reversing symmetry if there is a diffeomorphism, S (the reversor), that conjugates the flow to its inverse so that $\varphi_{-t}(S(z))=S\left(\varphi_{t}(z)\right)$. Again, this is equivalent to a requirement on the vector field

$$
\begin{equation*}
-f(S(z))=D S(z) f(z) \tag{6.27}
\end{equation*}
$$

This implies that in the new coordinate system, $\zeta=S(z)$, the differential equation $\dot{z}=f(z)$ becomes

$$
\dot{\zeta}=D S(z) \dot{z}=D S(z) f(z)=-f(S(z))=-f(\zeta)
$$

which is the same differential equation going backward in time.
In many cases the reversor S is an involution, i.e., $S^{2}=S \circ S=i d$. For example, for mechanical Hamiltonian systems (recall §1.4) of the form

$$
H(x, y)=\frac{1}{2} y^{2}+V(x),
$$

the involution $S(x, y)=(x,-y)$ reverses the momentum, y, and is equivalent to reversing time. Note also that in this case S is orientation reversing, $\operatorname{det}(D S)=-1<0$.

The fixed set of a reversor S is

$$
\operatorname{Fix}(S)=\{z: z=S(z)\}
$$

An orbit that intersects Fix (S) is a symmetric orbit. In particular, a symmetric equilibrium is a point $z^{*} \in \operatorname{Fix}(S) \cap\{f(z)=0\}$. Not every orbit is symmetric; however, every orbit has a symmetric partner (see Exercise 5).

It can be shown that the fixed set of any orientation-reversing involution in \mathbb{R}^{2} is a curve, $C=\operatorname{Fix}(S)$ (MacKay). If this is the case, then whenever z^{*} is a symmetric, linear center, it must be a true center of the nonlinear system.

Lemma 1. Suppose $\dot{z}=f(z)$ is reversible with reversor S and $\operatorname{Fix}(S)$ is a curve that contains an equilibrium z^{*} that is a linear center. Then z^{*} is a topological center.

Recall, for a linear center at the origin:
\triangleright Topological center: there is a $\delta>0$ such that every trajectory in $B_{\delta}(0) \backslash\{0\}$ is a closed loop enclosing the origin.

Proof idea: Close to the linear center, in polar coordinates, the angle θ must increase monotonically (see Meiss). Hence, for a point $z(0) \in \operatorname{Fix}(S)$ in this neighborhood the orbit must return to $\operatorname{Fix}(S)$ (roughly after an increase by π). Denote the time at which this first return happens τ. Then the reflection $\zeta(t)=S(z(t))$ of this orbit segment touches $\operatorname{Fix}(S)$ at $z(0)$ and $z(\tau)$. However $\zeta(t)$ is a solution beginning at $z(0)$ and going backwards in time, and so the curve $\gamma=\left\{\varphi_{t}(z(0))\right.$: $-\tau \leq t \leq \tau\}$ is a closed loop and by uniqueness must be a periodic orbit with period 2τ.

Example: The system

$$
\begin{align*}
& \dot{x}=-y+\alpha x^{2} y, \\
& \dot{y}=x+\beta y^{2} x^{2} \tag{6.28}
\end{align*}
$$

has the reversor $S(x, y)=(x,-y)$ since
$\operatorname{DSf}(x, y)=\left(-y+\alpha x^{2} y,-x-\beta y^{2} x^{2}\right)=-\left(-(-y)+\alpha x^{2}(-y), x+\beta(-y)^{2} x^{2}\right)=-f(S(x, y))$.
Note that the fixed curve for S is the x-axis, and since the origin is a symmetric fixed point, Lemma 6.4 implies it is a center. A phase portrait is shown in Figure 6.11. When $\alpha>0$, this system also has a pair of saddle equilibria.

1.3 Meiss Ex 6.5

A flow φ has a reversor S and an orbit $\Gamma=\left\{\varphi_{t}(x) \mid t \in \mathbb{R}\right\}$.
(a) Show that $\bar{\Gamma}=\left\{S \circ \varphi_{-t}(x) \mid t \in \mathbb{R}\right\}$ is also an orbit of φ.

Since S is a reversor we know that:

$$
\begin{equation*}
\varphi_{-t}(S(z))=S\left(\varphi_{t}(z)\right) \tag{1}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
S \circ \varphi_{-t}(x)=S\left(\varphi_{-t}(x)\right)=\varphi_{-(-t)}(S(x))=\varphi_{t}(S(x)) \tag{2}
\end{equation*}
$$

Denote $y=S(x)$, then $\bar{\Gamma}$ is of the form:

$$
\begin{equation*}
\bar{\Gamma}=\left\{\varphi_{t}(y) \mid t \in \mathbb{R}\right\} \tag{3}
\end{equation*}
$$

i.e. $\bar{\Gamma}$ is also an orbit of φ.
(c) Suppose $\Gamma \cap \operatorname{Fix}(S) \neq \emptyset$. Show that Γ and $\bar{\Gamma}$ coincide.

$$
\begin{equation*}
\operatorname{Fix}(S)=\{z \mid S(z)=z\} \tag{4}
\end{equation*}
$$

Consider $z^{*} \in \Gamma \cap \operatorname{Fix}(S)$. As $z^{*} \in \Gamma$ we can write:

$$
\begin{equation*}
\Gamma=\left\{\varphi_{t}\left(z^{*}\right) \mid t \in \mathbb{R}\right\} \tag{5}
\end{equation*}
$$

We saw in (a) that $\bar{\Gamma}=\left\{\varphi_{t}(S(x)) \mid t \in \mathbb{R}\right\}$. Since $\left\{\varphi_{-t}(x) \mid t \in \mathbb{R}\right\}=\left\{\varphi_{-t}\left(z^{*}\right) \mid\right.$ $t \in \mathbb{R}\}$ we can reach in the same way the result that:

$$
\begin{equation*}
\bar{\Gamma}=\left\{\varphi_{t}\left(S\left(z^{*}\right)\right) \mid t \in \mathbb{R}\right\} \tag{6}
\end{equation*}
$$

Since $z^{*} \in \operatorname{Fix}(S)$ we have:

$$
\begin{equation*}
\bar{\Gamma}=\left\{\varphi_{t}\left(z^{*}\right) \mid t \in \mathbb{R}\right\}=\Gamma \tag{7}
\end{equation*}
$$

i.e. the orbits coincide.

1.4 Meiss Ex 6.6

(a) Show that if x^{*} is a symmetric equilibrium of a reversible system, then whenever λ is an eigenvalue of the linearization at x^{*}, so is $-\lambda$.

Denote the system $\dot{x}=f(x)$ and the reversor of the system as S. Since the system is reversible, we know:

$$
\begin{equation*}
-f(S(z))=D S(z) f(z) \tag{8}
\end{equation*}
$$

Differentiating:

$$
\begin{equation*}
-D f(S(z)) \cdot D S(z)=D^{2} S(z) f(z)+D S(z) \cdot D f(z) \tag{9}
\end{equation*}
$$

The linearization at x^{*} is:

$$
\begin{equation*}
\dot{x}=D f\left(x^{*}\right) x \tag{10}
\end{equation*}
$$

Since x^{*} is symmetric, we know $S\left(x^{*}\right)=x^{*}$. Substituting $z=x^{*}=S(z)$ in the previous equation, we have:

$$
\begin{equation*}
-D f\left(x^{*}\right) \cdot D S\left(x^{*}\right)=D^{2} S\left(x^{*}\right) f\left(x^{*}\right)+D S\left(x^{*}\right) \cdot D f\left(x^{*}\right) \tag{11}
\end{equation*}
$$

Since x^{*} is an equilibrium, $f\left(x^{*}\right)=0$. Since S, being a symmetry, is a diffeomorphism, we know that $D S(z)$ is invertible and hence there exists $\left(D S\left(x^{*}\right)\right)^{-1}$. Multiplying the above equation from the left by $\left(D S\left(x^{*}\right)\right)^{-1}$, we see that:

$$
\begin{equation*}
D f\left(x^{*}\right)=\left(D S\left(x^{*}\right)\right)^{-1}\left(-D f\left(x^{*}\right)\right) D S\left(x^{*}\right) \tag{12}
\end{equation*}
$$

And so $D f\left(x^{*}\right)$ is similar to $-D f\left(x^{*}\right)$ and they have the same eigenvalues. However, the eigenvalues of $-D f\left(x^{*}\right)$ are simply minus the eigenvalues of $D f\left(x^{*}\right)$, and so if λ is an eigenvalue of $D f\left(x^{*}\right)$ then $-\lambda$ is an eigenvalue of $-D f\left(x^{*}\right)$, and hence of $D f\left(x^{*}\right)$ as well.

It is highly recommended that you solve the rest of exercises 6.5 and 6.6 at home for further practice on the subject of symmetries.

Bibliography

- Meiss, J. D. (2007). Differential dynamical systems, chapter 6

