
Dynamical Systems
Tutorial 13: Symmetries and Reversors

July 8, 2019

1 Symmetries
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1.1 Continuous and discrete symmetries
ṙ = rh(r), θ̇ = 1 (6.20)

ẋ = y2x− x2y, ẏ = x3 + y3 (6.11)
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1.2 Reversors

It can be shown that the fixed set of any orientation-reversing involution in R2 is a
curve, C = Fix(S) (MacKay). If this is the case, then whenever z∗ is a symmetric,
linear center, it must be a true center of the nonlinear system.

Lemma 1. Suppose ż = f (z) is reversible with reversor S and Fix(S) is a curve
that contains an equilibrium z∗ that is a linear center. Then z∗ is a topological
center.

Recall, for a linear center at the origin:
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Proof idea: Close to the linear center, in polar coordinates, the angle θ must
increase monotonically (see Meiss). Hence, for a point z(0)∈ Fix(S) in this neigh-
borhood the orbit must return to Fix(S) (roughly after an increase by π). Denote
the time at which this first return happens τ. Then the reflection ζ(t) = S(z(t))
of this orbit segment touches Fix(S) at z(0) and z(τ). However ζ(t) is a solution
beginning at z(0) and going backwards in time, and so the curve γ = {ϕt(z(0)) :
−τ ≤ t ≤ τ} is a closed loop and by uniqueness must be a periodic orbit with
period 2τ.

1.3 Meiss Ex 6.5
A flow ϕ has a reversor S and an orbit Γ = {ϕt(x) | t ∈ R}.

(a) Show that Γ̄ = {S◦ϕ−t(x) | t ∈ R} is also an orbit of ϕ.

Since S is a reversor we know that:

ϕ−t(S(z)) = S(ϕt(z)) (1)

Hence:

S◦ϕ−t(x) = S(ϕ−t(x)) = ϕ−(−t)(S(x)) = ϕt(S(x)) (2)

Denote y = S(x), then Γ̄ is of the form:

Γ̄ = {ϕt(y) | t ∈ R} (3)

i.e. Γ̄ is also an orbit of ϕ.

(c) Suppose Γ∩Fix(S) 6= /0. Show that Γ and Γ̄ coincide.
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Fix(S) = {z | S(z) = z} (4)

Consider z∗ ∈ Γ∩Fix(S). As z∗ ∈ Γ we can write:

Γ = {ϕt(z∗) | t ∈ R} (5)

We saw in (a) that Γ̄ = {ϕt(S(x)) | t ∈R}. Since {ϕ−t(x) | t ∈R}= {ϕ−t(z∗) |
t ∈ R} we can reach in the same way the result that:

Γ̄ = {ϕt(S(z∗)) | t ∈ R} (6)

Since z∗ ∈ Fix(S) we have:

Γ̄ = {ϕt(z∗) | t ∈ R}= Γ (7)

i.e. the orbits coincide.

1.4 Meiss Ex 6.6
(a) Show that if x∗ is a symmetric equilibrium of a reversible system, then

whenever λ is an eigenvalue of the linearization at x∗, so is −λ.

Denote the system ẋ = f (x) and the reversor of the system as S. Since the
system is reversible, we know:

− f (S(z)) = DS(z) f (z) (8)

Differentiating:

−D f (S(z)) ·DS(z) = D2S(z) f (z)+DS(z) ·D f (z) (9)

The linearization at x∗ is:

ẋ = D f (x∗)x (10)

Since x∗ is symmetric, we know S(x∗) = x∗. Substituting z = x∗ = S(z) in the
previous equation, we have:

−D f (x∗) ·DS(x∗) = D2S(x∗) f (x∗)+DS(x∗) ·D f (x∗) (11)
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Since x∗ is an equilibrium, f (x∗) = 0. Since S, being a symmetry, is a diffeo-
morphism, we know that DS(z) is invertible and hence there exists (DS(x∗))−1.
Multiplying the above equation from the left by (DS(x∗))−1, we see that:

D f (x∗) = (DS(x∗))−1(−D f (x∗))DS(x∗) (12)

And so D f (x∗) is similar to −D f (x∗) and they have the same eigenvalues.
However, the eigenvalues of−D f (x∗) are simply minus the eigenvalues of D f (x∗),
and so if λ is an eigenvalue of D f (x∗) then −λ is an eigenvalue of −D f (x∗), and
hence of D f (x∗) as well.

It is highly recommended that you solve the rest of exercises 6.5 and 6.6 at
home for further practice on the subject of symmetries.
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