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July 8, 2019

1 Symmetries

A flow is said to have a symmetry if there is a diffeomorphism, § : M — M, that
conjugates the flow to itself:

@ (S(2)) = S(g,(2)), t € R. (6.24)

Since we assume that S is smooth, we can take the time derivative of this relation to obtain
an equivalent requirement on the vector field associated with ¢:

f(85(2)) = DS(2) f(2). (6.25)



1.1 Continuous and discrete symmetries
i =rh(r),8 =1 (6.20)

Some symmetries, like a rotation symmetry, depend continuously upon a parameter and are
thus called continuous symmetries. For example, the system (6.20) is obviously symmetric
under the rotation

Sy(r,0) = (r,0 +y) (6.26)

for any angle 1. For this case DS is the identity matrix, so (6.25) becomes f(r,6 + ) =
f(r,0), which is satisfied for all  when f is a function of r only.

The collection of symmetries of a flow forms a group. This follows because the
identity map is always a symmetry, and if §; and S, are symmetries of ¢, then so is their
composition S3 = S) o S>. Similarly, the inverse of a symmetry also satisfies (6.24) and
therefore is also a symmetry. For example, the rotation symmetry (6.26) is a representation
of the abstract rotation group, O(2).

Discrete symmetries can also occur. For example, the system (6.11) is symmetric
under the transformation S(x, y) = (—x, —y), arotation by . To see this, note that for this
case DS = —1,50(6.25) becomes f(—x, —y) = — f(x, y), which is obviously satisfied by
(6.11). The symmetry group in this case has two elements, the identity and S, and is called
Z*. Much more about the implications of the existence of a nontrivial symmetry group can
be found in (Field and Golubitsky 1995; Golubitsky and Stewart 2002).

x=yx—x*y,y=x"+y (6.11)



1.2 Reversors

Another type of symmetry that commonly occurs is a time reversal or reversing
symmetry—when the motion backward in time is equivalent to that forward in time. Thus,
a system is said to have reversing symmetry if there is a diffeomorphism, S (the reversor),
that conjugates the flow to its inverse so that ¢_,(S(2)) = S(¢,(z)). Again, this is equivalent
to a requirement on the vector field

—f(8(z)) = DS(2) f(2). (6.27)

This implies that in the new coordinate system, { = S(z), the differential equation z = f(z)
becomes

¢ = DS(2)z =DS@) f(2) = —f(5(2)) = —f(7).

which is the same differential equation going backward in time.
In many cases the reversor § is an involution, i.e., §* = S o § = id. For example, for
mechanical Hamiltonian systems (recall §1.4) of the form

1,
H(x,v)= -y + V(x),

2
the involution S(x, y) = (x, —y) reverses the momentum, y, and is equivalent to reversing
time. Note also that in this case § is orientation reversing, det(D5) = —1 < 0.

The fixed set of a reversor § is
Fix(§) ={z:2=8(2)}.

An orbit that intersects Fix(S) is a symmetric orbit. In particular, a symmetric equilibrium
is a point z* € Fix(S5) N {f(z) = 0}. Not every orbit is symmetric; however, every orbit
has a symmetric partner (see Exercise 5).

It can be shown that the fixed set of any orientation-reversing involution in R? is a
curve, C = Fix(S) (MacKay). If this is the case, then whenever z* is a symmetric,
linear center, it must be a true center of the nonlinear system.

Lemma 1. Suppose z = f(z) is reversible with reversor S and Fix(S) is a curve
that contains an equilibrium z* that is a linear center. Then 7* is a topological
center.

Recall, for a linear center at the origin:

> Topological center: there is a é > 0 such that every trajectory in B;(0)\ {0}
is a closed loop enclosing the origin.



Proof idea: Close to the linear center, in polar coordinates, the angle 6 must
increase monotonically (see Meiss). Hence, for a point z(0) € Fix(S) in this neigh-
borhood the orbit must return to Fix(S) (roughly after an increase by m). Denote
the time at which this first return happens t. Then the reflection () = S(z(r))
of this orbit segment touches Fix(S) at z(0) and z(t). However {(¢) is a solution
beginning at z(0) and going backwards in time, and so the curve Y= {@;(z(0)) :
—1 <t <7} is a closed loop and by uniqueness must be a periodic orbit with
period 27.

Example: The system
X =—y+axly,
. 2.2
y=x+pyx-°

has the reversor S(x, y) = (x, —y) since

(6.28)

2.2

DSf(x,y)= (—_\"+(.r.\‘1_\". —.\‘—,B_\"l.\‘l) = —(—(—_\")+a.1‘2(—_\"). X+B(—=y)"x7)=—f(S(x, y)).

Note that the fixed curve for § is the x-axis, and since the origin is a symmetric fixed point,
Lemma 6.4 implies it is a center. A phase portrait is shown in Figure 6.11. When a > 0,
this system also has a pair of saddle equilibria.

1.3 Meiss Ex 6.5
A flow @ has a reversor S and an orbit I' = {¢,(x) | 7 € R}.

(a) Show that I' = {So@_;(x) | t € R} is also an orbit of @.
Since S is a reversor we know that:

¢-:(S(2) = S(@(2)) (D)

Hence:

S0 Q-1(x) = S(9-+(x)) = 01 (Sx)) = ¢:(S(x)) 2
Denote y = S(x), then I is of the form:

L={g:(y) [t R} 3)

i.e. I is also an orbit of @.

(c) Suppose I'MFix(S) # 0. Show that I" and I coincide.
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Fix(8) = {z[ 8(z) = 2} )
Consider z* € TNFix(S). As z* € I" we can write:

F={e:(z") [t € R} (5)

We saw in (a) that T' = {@,(S(x)) |t € R}. Since {@®_,(x) |t € R} = {0_,(z") |
t € R} we can reach in the same way the result that:

T'={g/(S(z") [t €R} (6)

Since z* € Fix(S) we have:

F={g:(z")|[teR}=T )

1.e. the orbits coincide.

1.4 Meiss Ex 6.6

(a) Show that if x* is a symmetric equilibrium of a reversible system, then
whenever A is an eigenvalue of the linearization at x*, so is —A.

Denote the system X = f(x) and the reversor of the system as S. Since the
system is reversible, we know:

—f(8(z)) = DS(2) f(2) (8)
Differentiating:
—Df(S(2))-DS(z) = D*S(2) f(2) + DS(2) - Df (2) ©)
The linearization at x* is:
x=Df(x")x (10)

Since x* is symmetric, we know S(x*) = x*. Substituting z = x* = S(z) in the
previous equation, we have:

— Df(x*)-DS(x*) = D>S(x*) f(x*) + DS(x*) - Df (x*) (11)



Since x* is an equilibrium, f(x*) = 0. Since S, being a symmetry, is a diffeo-
morphism, we know that DS(z) is invertible and hence there exists (DS(x*))~".
Multiplying the above equation from the left by (DS(x*))~!, we see that:

Df(x*) = (DS(x*)) " (=D f(x*))DS(x") (12)

And so Df(x*) is similar to —Df(x*) and they have the same eigenvalues.
However, the eigenvalues of —D f(x*) are simply minus the eigenvalues of D f(x*),
and so if A is an eigenvalue of Df(x*) then —A is an eigenvalue of —D f(x*), and
hence of Df(x*) as well.

It is highly recommended that you solve the rest of exercises 6.5 and 6.6 at
home for further practice on the subject of symmetries.
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